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ALLMAT: A TSS/360 FORTRAN N SUBROUTINE FOR EIGENVALUES 

AND EIGENVECTORS OF A GENERAL COMPLEX MATRIX 

by Gale Fair 

Lewis Research Center 

SUMMARY 

A subroutine is described and listed that computes the eigenvalues and eigenvectors 
of a general (non-Hermitian) complex matrix. 
plex QR algorithm to compute eigenvalues and inverse iteration to compute eigenvectors. 
The u s e r  has the option of computing only the eigenvalues, if desired. An entry point 
EVDATA is available to provide the use r  with timing and accuracy information, as well 
as the number of iterations necessary for  each eigenvalue and eigenvector. 

The program, ALLMAT, uses  the com- 

INTRODUCTION 

Many areas of physics, mathematics, statist ics,  and engineering require the eigen- 
values and eigenvectors of square matrices. 
t imes called the algebraic eigenvalue problem, holds a place that is as important as the 
more familiar areas such as numerical integration, curve fitting, and numerical in- 
tegration of differential equations. A general l ibrary of subroutines fo r  a computer 
installation is commonly limited to one such program, and quite often this one sub- 
routine is of only limited applicability. 

The ideal subroutine for the algebraic eigenvalue problem should have many fea- 
tures: it should be fast and accurate; it should give a matrix of eigenvectors that are 
linearly independent; it should be capable of computing only eigenvalues at a corre- 
sponding increase in speed; it should have minimal storage requirements; and it must 
be able to treat all matrices,  real or  complex, symmetric or  nonsymmetric, regardless 
of the condition of the matrix. Unfortunately, probably no such procedure exists. 
usefulness of any subroutine may be judged on the basis of how many of these c r i te r ia  
are fulfilled, as balanced against the needs of the individual user .  

This area of numerical analysis, some- 
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There are many different techniques fo r  diagonalizing a square matrix. The 
treatise by Wilkinson (ref. 1) is evidence fo r  this. Reference 1 describes the state-of- 
the-art fo r  the algebraic eigenvalue problem as of 1965. Typically, one chooses a 
p a r t i c d a r  method because he  believes that his matrix has some feature that requires 
special handling, because a subroutine is conveniently at hand, o r  because h e  knows only 
that one method. Two of the most commonly used procedures are the power method and 
the Jacobi transformation. 

The power method is a special-purpose procedure that computes the largest  eigen- 
value of a matrix by the formation of a sequence of powers of the matrix acting upon an 
arbi t rary vector. This procedure is useful fo r  the computation of a few eigenvalues 
(the largest  in magnitude) and their  eigenvectors. 
eigenvalues and eigenvectors is both t ime consuming and inaccurate. 

of a sequence of unitary transformations that diagonalize 2 x 2 submatrices of the full 
matrix. 
particularly useful when the eigenvectors are required to be orthogonal to a high degree 
of accuracy. The limitations of the Jacobi transformation are that the accuracy of the 
eigenvectors is usually limited, and as yet no extension to nonsymmetric o r  non- 
Hermitian matrices has been made. The most common computer l ibrary subroutine 
f o r  the algebraic eigenvalue problem is a real-symmetric version of the Jacobi method 
(ref. 2). 

been derived to compute the eigenvalues and eigenvectors, respectively. The input 
matrix is reduced to a Hessenberg form (ref. l), and the QR transformation of Francis  
(refs. 3 and 4) is used to compute the eigenvalues. With a lmowledge of the eigenvalues, 
the Wielandt inverse iteration method (ref. 1) generates the eigenvectors. The QR 
transformation and inverse iteration appear to be the best  currently available for their  
respective tasks (ref. 1) in t e rms  of accuracy and speed. This combined procedure has 
been coded at the Oak Ridge National Laboratory (ref. 5) f o r  an IBM 360/50 using the 
H-level FORTRAN compiler and COMPLEX*16 arithmetic. This program was used as 
the basis f o r  the subroutine to be described in this report. 

additions were  made to the ORNL program, as follows. 
the Hessenberg form may be decomposed into disjoint submatrices is incorporated in 
both the QR transformation and the inverse iteration to reduce computational time. A 
perturbation method is used to obtain linearly independent eigenvectors when eigenvalues 
are either degenerate o r  very nearly the s a m e  value (meaning that the matrix itself may 
be ill-conditioned (ref. 1)). An auxiliary entry point is provided to give the u s e r  in- 

The computation of a full set of 

The Jacobi transformation, as it applies to a complex Hermitian matrix, consists 

This procedure generates the eigenvectors along with the eigenvalues and is 

For  a general (i. e. , nonsymmetric o r  non-Hermitian) matrix, two procedures have 

In o rde r  to make the subroutine as general as possible, some modifications and 
The fact that for  some matrices 
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formation about the number of iterations required, timing data (measured as central 
processor o r  CPU t ime elapsed in the computation), and e r r o r  data for the resulting 
eigenvalues and eigenvectors. Finally, a flag has been provided to allow the u s e r  to 
compute only the eigenvalues, with the use  of the QR transformation. The relative con- 
tribution made by the present work is seen from the observation that approximately 
60 percent of the coding of the current form of the subroutine ALLMAT is the ORNL 
coding while the remaining 40 percent is new. 

pute the eigenvalues and eigenvectors of a square matrix. 
to be the final work in such procedures, the algebraic eigenvalue problem is an area 
of extensive research in numerical analysis. On the other hand, this subroutine does 
satisfy most of the c r i te r ia  mentioned earlier f o r  the ideal subroutine, at least to some 
degree. The criterion that is least satisfied is minimal storage. Because ALLMAT is 
written with COMPLM*16 arithmetic and has some l a rge  scratch-pad a r r ays ,  the sub- 
routine uses a large amount of storage. On a TSS/360 system this storage requirement 
is not a basic limitation on the subroutine, but it does imply that the CPU time is af- 
f ected. 

warning to the prospective use r  of ALLMAT. If only a small  number of the (largest) 
eigenvalues of a matrix are desired, the power method is more efficient than ALLMAT. 
F o r  a real, symmetric matrix, a problem that requires eigenvectors along with the 
eigenvalues would be better suited to a real Jacobi subroutine. On the other hand, for  
the computation of eigenvalues alone, o r  for  the eigenvalues and eigenvectors of a real, 
nonsymmetric matrix o r  for  a complex matrix, ALLMAT seems to be the best choice, 
at this time. 

The end result  of the work described he re  is a subroutine fo r  the IBM/360 to com- 
Certainly, this is not meant 

This brief mention of storage requirements is an opportunity to interpose a slight 

The next section of this report  describes schematically the construction of the sub- 
routine ALLMAT. This includes the information necessary fo r  a programmer to use 
ALLMAT. Also included are brief descriptions of the mathematical procedures used in 
ALLMAT. The following section discusses the special features that have been incorpo- 
rated in ALLMAT, including a description of the subsidiary ENTRY EVDATA that pro- 
vides timing and accuracy information fo r  the user.  Finally, a number of test matrices 
are used as examples fo r  ALLMAT. These examples give an indication of running 
t imes and accuracy obtainable with the program, even with some ill-conditioned input 
matrices. A FORTRAN listing of ALLMAT is given in the appendix. 

and as such it described the call vector for the subroutine and the rules f o r  usage. In 
addition, enough information is provided the prospective use r  to allow an intelligent 
application of this program to his particular problem. 

This report  is intended to be used as a user 's  manual for  the subroutine ALLMAT, 

The prospective use r  should not 
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apply this program to his problem without some understanding of the numerical methods 
involved and of the construction of the subroutine. 

GENERAL CONSTRUCTION 

Usage 

The information to be discussed in this section is aimed at explaining the program 

The user 's  access  is through the statement (see the appendix fo r  the complete 
as a FORTRAN subroutine, along with a description of the ENTRY EVDATA. 

FORTRAN listing of the subroutine): 

CALL ALLMAT (AA, LAMBDA, M, MM, EVECT, NCAL) 

where 

AA 

LAMBDA 

M 

MM 

EVECT 

NCAL 

input COMPLEX*16 matrix, of dimension M I MM. Upon return from 
ALLMAT, ith column of AA is ith eigenvector, corresponding to i 
eigenvalue. 

th 

COMPLEX*16 vector of length M that contains 'eigenvalues upon return 
from ALLMAT. 

actual dimension of input matrix AA. 

dimension of AA as it appears in a dimension statement in the calling pro- 
gram. MM is the upper bound fo r  the s i z e  of matrices used. As 
ALLMAT is currently written, MM must be no greater  than 50. 

a logical switch. If EVECT = . TRUE. , the eigenvectors of AA are calcu- 
lated, and returned in the matr ix  AA. If EVECT = .FALSE., no eigen- 
vectors are calculated and AA contains no useful information upon return 
f rom ALLMAT. 

number of eigenvalues successfully computed by ALLMAT. If NCAL < M 
some attempts of the QR transformation did not converge within 10' iter- 
ations. The value of the element of LAMBDA that corresponds to this 
eigenvalue has been set to zero by ALLMAT. 

In addition to the pr imary entry point, a secondary ENTRY EVDATA is available to 
give the u s e r  information on the CPU time taken fo r  the eigenvalue and eigenvector 
procedures. Also available are the number of QR iterations required f o r  each eigen- 
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value, the number of inverse iterations required for  each eigenvector, and the Euclidean 
norms of the residual vectors. A more complete description of these quantities is given 
later. The usage fo r  this optional entry point is 

CALL EVDATA (ITS,KTS,NCO, MC0,RNORM) 

where 

ITS 

KTS 

NCO 

MCO 

RNORM 

elapsed t ime for  QR transformation for  eigenvalues, including t ime to re- 
duce to upper Hessenberg form. ITS is an integer, in microminutes. 

elapsed t ime for  inverse iteration for eigenvectors. Does not include t ime 

an integer vector of dimension MM that has as its ith element the number 

represented by ITS. Also an integer in microminutes. 

of QR iterations for  the ith eigenvalue. NCO (i) 5 10. If NCO (i) = 0, 
this eigenvalue was obtained along with another, no separate  QR iteration 
w a s  required. If NCO (i) < 0, no convergence w a s  obtained for  this eigen- 
value within ten QR iterations. 

inverse iterations necessary to obtain the ith eigenvector. MCO (i) 5 10. 
integer vector of dimension MM that has as its ith element the number of 

REAL*8 vector of the norms of the residual vectors of AA. See section 
SPECIAL FEATURES OF ALLMAT for  a more complete description. 
RNORM also has a dimension MM. 

As an example of the usage of ALLMAT, consider a 6x6 complex matrix AA that 
is to be diagonalized. Let u s  assume that the TYPE statement in the calling program 
that specifies the dimensions of AA and LAMBDA has the form 

COMPLEX*16 AA (10, lo ) ,  LAMBDA(10) 

The a r r ays  have been overdimensioned for more generality. Let  us further assume 
that eigenvectors are desired from ALLMAT, s o  that EVECT has been assigned a value 
.TRUE.. Then the call to ALLMAT is 

CALL ALLMAT (AA, LAMBDA, 6,10, EVECT,NCAL) 

Upon return from ALLMAT the integer variable NCAL contains the number of eigen- 
values that have been successfully computed by ALLMAT. The ith column of AA (I. E. 
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AA ( 1 , l )  to AA ( 6 , l ) )  contains the ith eigenvector, corresponding to the eigenvalue 
LAMBDA (1). 

then the statement 
If the timing and e r r o r  information provided by EVDATA are desired by the user ,  

CALL EVDATA (ITS, KTS, NCO, MCO, RNORM) 

is used, where NCO, MCO, and RNORM have been dimensioned at least six in the calling 
program. The conversion from ITS o r  KTS (in microminutes) to milliseconds is ob- 
tained by multiplying either integer by 0.06 and assigning the result  to a floating-point 
variable. 

QR TRANSFORMATION 

The basis of the QR transformation is a theorem by Francis that states any non- 
singular matrix A has a unique decomposition into the product of a unitary matrix Q 
and an upper triangular matrix R (ref. 3) ,  o r  

A = QR 

The QR algorithm consists of forming a sequence of matrices s imilar  to A (=A 
such that 

) (1) 

and then 

where A 
shows that this sequence of matrices has  as its limit  an upper triangular matrix, the 
diagonal elements of which are the eigenvalues of the original matrix A. Furthermore,  
even if the original matrix is singular, the algorithm still gives convergence to a unique 
triangular matrix, even though some of the intermediate Q and R may not be unique. 

A detailed discussion of the convergence properties and the e r r o r  analysis of the QR 
algorithm is given in references 1, 3,  and 4. It is sufficient to note for  our purpose 

is the form of the matrix after the Kth decomposition. Francis (ref. 3) 
(K 1 

A full description of the QR transformation is certainly not relevant to this report. 
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that the QR algorithm is an extremely stable, rapidly converging procedure to calculate 
the eigenvalues of a general matrix (ref. 1). The version of the QR transformation 
that is pa r t  of ALLMAT, one that includes origin shifts to accelerate convergence, is 
powerful enough to satisfy nearly all of the needs of the average user.  

ployed that the prospective use r  should be aware of. A preliminary s tep in any im- 
plementation of the QR transformation is the reduction of the input matrix to Hessenberg 
form. An upper Hessenberg form (i. e., A..  = 0 if i > j + 1) is used in ALLMAT. The 

11 
reduction is accomplished by a sequence of elementary transformations (ref. 1) .  The 
elements of these elementary transformations are stored in  the unused portion of A (the 
lower subtriangle of A)and in the integer vector JNT. This information is used at the 
end of the inverse iteration to recover the eigenvectors of the original matrix from the 
eigenvectors of the Hessenberg matrix. The point of caution for  the u s e r  is that the 
working matrix f o r  the subroutine is the Hessenberg form, which in general bears no 
simple relation to the input matrix. Thus, if  the u s e r  attempts to debug this subroutine 
at an intermediate stage, the relation between the Hessenberg form and the original form 
must ge kept in mind. 

The advantage of using the Hessenberg form is apparent in the t ime needed to com- 
plete the computation of the eigenvalues. Most methods that operate on the entire input 
matrix, such as the Jacobi method, require a number of operations that is approxi- 
mately 30N (ref. 2), where N is the order  of the matrix. The reduction to Hessenberg 
form is a one-pass operation and requires  a N 3  operations, where Q, is of o rde r  unity. 
The QR algorithm applied to the Hessenberg form only requires something of the order  of 
N 
conditions the QR transform produces eigenvalues in less time than the Jacobi trans- 
fo r  mation. 

There is one unusual feature of the standard way in which the QR algorithm is em- 

3 

2 operations. One interesting result of this is the observation (ref. 5) that under many 

Inverse Iteration 

The basis of the inverse iteration procedure is the observation that, if X is an 
eigenvalue of the matrix A, the quantity (A - X I ) ,  where I is the unit matrix, will be 
singular. Thus, if X is a good approximation to an eigenvalue of A, the matrix 
(A - XI)-'  may be iterated to obtain an approximation Y to the eigenvector X. The 
iteration process is carried out until after the Kth iteration the norm of the iterated 
vector, (A - XI)-1 YK is greater  than some preselected value (see the appendix). This 
procedure is equivalent to the power method, but in inverse powers of the matrix 
(A - XI).  The speed with which this iteration produces an eigenvector depends on the 
accuracy of the estimate fo r  the eigenvalue, but rarely does this procedure, combined 
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with the QR algorithm, require  more than 2 iterations to produce eigenvectors to at 
least six o r  seven place accuracy. Again, the interested u s e r  is referred to Wilkinson 
(ref. 1) for a complete description of the method and the e r r o r  analysis. 

SPECIAL FEATURES OF ALLMAT 

As mentioned in the introduction, the basic elements of ALLMAT, the reduction to 
Hessenberg form, the QR transformation, and the inverse iteration, are taken from an 
ORNL subroutine (ref. 5). There are several  features that have been added to this basic 
program to either add effectiveness to the program o r  provide timing and accuracy in- 
formation to the user .  These special features will be  discussed in this section, more 
o r  less in the order  that they appear in the program. 

Decomposed Heasenberg Form 

The reduction of the original matrix to Hessenberg form is a procedure that de- 
c reases  the number of operations necessary for the QR algorithm. In a la rge  number 
of cases the nature of the Hessenberg form allows fur ther  simplifications. To illustrate 
this, sketch (a) shows an upper Hessenberg matrix, of order  N. The X's in the sketch 

X 

X 

0 

0 

X 

x 

X 

X 

0 

X 

X X 

X 

0 

0 

X 

X 

0 

X 

x 

X 

X 

X 

X 
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indicate matrix elements, generally nonzero, whose values are unimportant. Now let 
one of the subdiagonal elements vanish, for  example A(R, R - 1) = 0. Then the 
Hessenberg matrix may be decomposed into four submatrices as shown in sketch (b). 

4 x x .  
I 
I 
I B 
I 
I 

x X I  

0 

C 

D 

X 

The submatrices B and D are upper Hessenberg matrices of order  R - 1 and 
N -R + 1, respectively. Submatrix C is a nonzero matrix with N - R + 1 columns 
and R - 1 rows. The remaining submatrix of this partition of A is entirely filled 
with zeroes. 

The result  of this decomposition is that the problem of finding the eigenvalues of 
B and D becomes entire disjoint; that is, the eigenvalues of B and D, collectively, 
are the eigenvalues of A. The submatrix C plays no part  in the eigenvalue problem. 
Thus, instead of the solution of a single matrix of order  N,  the problem has been re- 
duced to the solution of two matrices, of order  N - R + 1 and R - 1. Since 
N > (N - R + 1) + (R - 1) for  N 2 3 and R that is not trivial, this decomposition 
implies a significant reduction in the total number of operations in the QR transforma- 

2 2 2 
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tion. For  many input matr ices ,  particularly those matr ices  that are sparse ,  a number 
of such decompositions may be performed and the gain in machine t ime is important. 

although some improvement is made. The eigenvectors corresponding to eigenvalues 
of D (see sketch (b)) depend upon the submatrices B and C, s o  that the entire matrix 
must be used in the inverse iteration procedure. The eigenvectors corresponding to 
the eigenvalues of B, on the other hand, do not require  matrices C or  D, so  that only 
B is used in the inverse iteration. Thus, some advantage is gained from the decom- 
position f o r  the calculation of the eigenvectors. On the whole, though, the main ad- 
vantage of the decomposition enters  in the QR transformation. 

This decomposition is not as important for  the calculation of the eigenvectors, 

Perturbation of Close Eigenvalues 

One difficulty with the inverse iteration method arises when two o r  more eigen- 
values a r e  very nearly the same. Since every calculated eigenvalue differs f rom the 
"true" eigenvalue by an amount that depends on many factors, these eigenvalues may 
not produce linearly independent eigenvectors. The way chosen to resolve this acci- 
dental degeneracy was to perturb each successive close eigenvalue by an amount small  
enough to not disturb the convergence of the iterative procedure, but la rge  enough to 
resolve the eigenvectors into linearly independent vectors (ref. 1). The choice of the 
perturbation, EPSIL, is arb i t ra ry  and a better choice could be made fo r  particular types 
of matrices. 

Since the existence of close but distinct eigenvalues implies that the matrix may be 
ill-conditioned (ref. l), the accuracy of the calculated eigenvectors will  be  in doubt. In 
this sense,  the use  of a perturbation to separate  the eigenvalues is an attempt to re- 
cover some useful information from a badly posed problem. Thus, for most matrices 
encountered, the existence of close but distinct eigenvalues should be rare. The occur- 
rence of multiple eigenvalues is more common. 

Multiple Eigenvalues 

The existence of a set of multiple eigenvalue is a not uncommon occurrence in phys- 
ical problems. The existence of such a set implies that there  is a subspace of eigen- 
vectors that one des i res  the basis vectors of. In this situation the perturbation is of 
some help. If, by the process of perturbing the degenerate eigenvalues within the in- 
verse  iteration process ,  one can obtain a set of distinct eigenvectors, even ii they are 
not linearly independent, then there  is a standard solution to the problem of determini):;; 
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t h e b a s i s  vectors. F o r  this purpose ALLMAT takes the set of distinct eigenvectors 
produced by the perturbation technique just discussed and uses  a Gram-Schmidt (ref. 1) 
orthogonalization procedure to give a set of linearly independent eigenvectors. Since 
the Gram-Schmidt process  involves taking the differences of nearly equal numbers in 
many cases ,  the accuracy of such a procedure is less than the accuracy of an inverse 
iteration vector for  a distinct eigenvalue. Again, however, this represents an attempt 
to salvage as much information as one can from an undesirable situation. In practice, 
as shall be seen in the section TESTS, the results of this perturbation and orthogo- 
nalization procedure are good. 

ENTRYEVDATA 

The remaining special feature of ALLMAT is represented by the secondary entry 
point, EVDATA, as discussed in general construction. A typical u se r  of an installation- 
supplied mathematical subroutine is usually blissfully unaware of any e r r o r  consider- 
ations for  his problem. Since the accuracy of any matrix eigenvalue evaluation strongly 
depends upon the properties of the input matrix, ignoring e r r o r  information is equi- 
valent to shutting one's eyes to avoid an oncoming truck. Additionally, since some 
eigenvalues and eigenvectors may in fact be absent due to nonconvergence either in QR 
or  inverse iteration, the information provided by EVDATA is-important to a user .  
u se  of the TSS/FORTRAN multiple-data set capability means that this information is 
readily available to the use r ,  without so much as the disturbance of an art ist ic output 
format. 

The information available in EVDATA includes the number of iterations, the CPU 
t ime elapsed for  the eigenvalue and the eigenvector computations, and an e r r o r  estimate 
fo r  each eigenvalue-eigenvector pair. The timing and counting variable provided in 
EVDATA were  discussed sufficiently under usage, but the e r r o r  information requires 
some  further comment. 

the vector AX - hX will be identically zero. Since neither h nor X can ever  be 
computed exactly, this vector (AX - AX), called the  residual vector, will be nonzero. 
The magnitude of this vector is then a measure of the e r r o r  in X and X. The length of 

a vector, as used in ALLMAT, is the Euclidean norm, 1 IX I I =(c(x(i)I ") . The vec- 
t o r  RNORM of EVDATA contains the norm of the residual vector for each eigenvalue- 
eigenvector pair, scaled to the  Euclidean norm of the input matrix. 

The data entry point EVDATA may be used even if  no eigenvectors are computed 
(i. e., if EVECT = .FALSE. ) In this case only ITS and NCO contain meaningful values. 

The 

If X and X are an exact eigenvalue and an exact eigenvector of the matrix A, then 

1/ 2 
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TESTS 

.14E-16 r;; 

Seven matrices were  chosen as examples fo r  ALLMAT. The dimensions of these 
matrices vary from four to 19. All but two matr ices  are real but not symmetric,  one 
of the remaining matr ices  is Hermitian, and the final example matrix is complex, but 
not Hermitian. Some of these matr ices  were  chosen to illustrate ill-conditioning of one 
type o r  another. Since the numerical values of the eigenvectors are not of general use,  
they are not displayed. 

; 

Matrix 1 

-0.7 

0.2 

AI = ([m! 0.5 

0.2 

-0.4 

-0.1 

0.5 

0.5 

0.7 

0.4 

This real, but unsymmetric, matrix of order  four has the exact eigenvalues 0.9, 0.6, 
-0.3, and 0. In addition, the computed eigenvalue corresponding to 0. is 0.14E-16. 
The information available f rom EVDATA on this test includes: 

iterations 

_ _ ~  
Jumber of inverse I RNORM 

iterations 

3 
3 
3 
3 

0.653-16 
.43E- 16 
.16E- 16 
.91E-16 

The total t ime f o r  the QR transformation, including the initial reduction to Hessenberg 
fo rm w a s  0.053 second, and the t ime for the inverse iteration was 0.046 second. 

1 2  



Matrix 2 

0.25000025 -1.0 -0.49999975 -0.99999975 

-0.50000050 0.5 0.24939950 0.25000025 

A 2 =  ( 1.00000025 1.25 1.00000025 1.25000025 

-0.4999975 -0.25 0.25000025 0.50000025 

This matrix has eigenvectors identical to those of matrix 1, but has  a different set of 
eigenvalues. The exact eigenvalues of A2 are given in the following table: 

Eigenvalue 

1 . 5  
.75000075 
. 7 5  

-. 75 

I 

The closeness of the second and 

iterations iterations 

0 
1 

RNORM 

~ 

0.68E- 16 
.10E-15 
.46E-14 
.64E-15 

third eigenvalues hint at some e r r o r  problems with the 
eigenvectors. The t ime for  QR transformation was 0.020 second, and the t ime for the 
inverse iteration was 0.090 second. The difficulties anticipated from the closeness of 
the eigenvalues are evidenced in the degradation of the third value of RNORM in the 
table. 

Matrix 3 

0.009 5.00101 -8.999 3.999\ 

-0.001 5.01101 -8.999 3.999 

*3= ( - 0.001 4.91101 -8.899 3.999 

- 0.001 4.96101 -8.999 4.049 
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This matrix A3 is an example of an ill conditioned matrix, in contrast with the pre- 
vious example. Here,  A2 had two nearly alike eigenvalues even though the matrix is 
not mathematically ill conditioned (ref. 1). 

~ 

3 
3 
3 
1 

~ 

E igenvalu f 

3 
3 
3 
3 

0.01 
. O l O O l  
.1 
-05  

RNORM- 

~ ~- 
0.253-16 

.14E-16 

.18E-16 

.233-16 

The t ime for QR transformation w a s  0.038 second; that fo r  inverse iteration w a s  0.025 
second. Apparently, the ill conditioning did not effect the inverse iterations, as all 
values of RNORM a r e  satisfactory. 

Matrix 4 

5. 

-2. 

3 .  

1. 

- 4 .  

0. 

4. 3 .  2. 1. 

1. 6 .  3 .  2. 

2. -2. 4. 3 .  

- 3 .  -1. 5. 5. 

2. 0. 1. 4. 

1. 3 .  6. 6. 

Unlike the first three  test matrices, A4 has a pair  of complex eigenvalues. 

Eigenvalue 

3.0929 
.1772+. 95E-16i 
.42295+4.39541 
.42295-4.39541 

15.247+. l lE-14i 
-7.3630 

Number of QR 
iterations 

6 
6 
5 
4 
1 
1 

\lumber of inverse 
iterations 

RNORM 

0. 783-16 
.24E-15 
. l lE-15  
.17E-15 
.56E-15 
.473-15 
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The time f o r  QR transformation w a s  0.142 second; that for  inverse iteration was 0.314 
second. The imaginary par t  of the sum of the eigenvalues (which should be 0. ) is 
0.355E- 14. 

Matrix 5 

This test matrix is a 19 by 19 real, unsymmetric matrix given by Francis  (ref. 4) 
to demonstrate the QR transformation. The matrix is too complicated to list here,  but 
the e r r o r  information is informative. The t ime to produce the eigenvalues was 
2 seconds, and the t ime to calculate the 19 eigenvectors was 22 seconds. Although this 
t ime is large when compared with the previous examples, it is quite reasonable when 
compared with other methods (ref. 5). Even with a matrix of this order,  the residual 
vectors all had norms less than l.E-16. 

Matrix 6 

A =  
6 

0. - . q 1 3 7 6 1 0 3 1  0 .  0 .  0 .  0. 0. 0. 0 .  0. - 
0 .  0 .  0 .  

' 0 .  0 .  0. . 
. 9 1 3 7 6 1 n 3 i  0. 0 .  0 .  0. 0 .  0. 

0. 0. 0. 0. 0 .  0 .  0. 
0. 0. 0. - . 3 8 8 2 1 3 0 6 1  0 .  0 .  - . I 4 4 3 3 3 7 6 1  , 0 .  0. - . 9 4 6 7 4 0 9 0 1  - 
0. 0 .  . 3 8 8 2 1 3 O f i i  0 .  0. - . 1 4 4 3 3 3 7 6 ;  0. 0. - . 9 4 6 7 4 0 9 O i  0. - 
0. 0. 0. 0. 0 .  0 .  0 .  0. 0 .  0 .  - 
0. 0 .  0. . 1 4 4 3 3 3 7 6 i  0 .  0. - 1 . 0 2 1 4 0 6 8 3 i  0 .  0 .  . 0 3 9 6 6 8 1 0 i  * 
0. 0. . 1 4 4 3 3 3 7 5 i  0. 0 .  1 . 0 2 1 4 0 6 R 3 i  0 .  0 .  - . 0 3 9 6 6 8 1 0 1  0. - 
0 .  0 .  0. . 9 4 f i 7 4 O q n i  0 .  0 .  . 0 3 9 6 6 8 1 0 1  0 .  0 .  . 7 4 7 0 5 5 4 O i  - 
0 .  0 .  . 9 4 5 7 4 O q O i  0. 0. - . 0 3 1 6 6 8 1 0 1  0 .  0 .  - . 7 4 7 0 5 5 4 0 i  . 0 .  

This matrix has several  features that make it useful as an example. Each nonzero 
element of A6 is a purely imaginary number and, in addition, A 
the eigenvalues of A6 are real and, since the t race of A6 vanishes, the eigenvalues 
occur in positive-negative pairs. There is a pair  of degenerate eigenvalues with the 
value 0, s o  that the orthogonalization procedure must be used to obtain the eigenvectors. 
Finally, A6 is sufficiently spa r se  that the decomposition of the Hessenberg form is 
effective in reducing the t ime required f o r  the computations. 

is Hermitian. Thus, 6 
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Eigenvalue 

-0.91376103 
.91376103 

-1.03872417 
-. 38452612 

.38452612 
1.03872417 

-1.53711192 
1.53711192 
0 
0 

Number of QR 
iterations 

3 
3 
7 
6 
5 
4 
1 
1 
3 

~ 1. . 

Number of inverse 
iterations 

3 
3 
3 
3 
3 
3 
3 
3 
3 

3- 

RNORM 

3.263-16 
.16E-16 
.31E-15 
.96E- 16 
.55E-15 
.74E-15 
.15E-14 
.21E-14 

1 
1 

The time f o r  QR transformation was 1.07 second; that fo r  inverse iteration was 
1.50 second. 
lated by the QR algorithm. Since the reduction to Hessenberg form and the u s e  of the 
decomposed Hessenberg form rearrange the matrix, the eigenvalues are not computed 
in pairs,  necessarily. This s a m e  effect caused the QR routine to take three iterations 
to compute a zero eigenvalue. The degenerate eigenvalues caused no loss  of accuracy 
in the computation of the eigenvectors. Furthermore,  the sum of the eigenvalues is 
purely imaginary, and has the magnitude 0.4E-14, reflecting the zero t race of A6. 

The eigenvalues appear in this table in the o rde r  in which they are calcu- 

Matrix 7 

The final example matrix was generated from matrix A4 by taking each element of 
this 6 by 6 real, nonsymmetric matrix and multiplying by the imaginary unit i. The 
result, A7, is a complex non-Hermitian matrix whose eigenvalues are the eigenvalues 

Eigenvalue 

3.09291 

4.3954+. 422951 
-4.3954i. 42295 

15.2471 

.95E-16+. 17721 

.44E- 15- 7.36301 

Number of QR 
iterations 

6 
6 
5 
4 
1 
1 - 

Vumber of inverse 
iterations 

RNORM 

0. 77E-1€ 
.28E-1! 
.10E-1! 
. 16E- 1E 
.48E-1: 
.52E-1! 

16 
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of A4 multiplied by i. The Qr transformation t ime was 0.140 second, and the inverse 
iteration t ime was 0.319 second. 

example A4 shows that ALLMAT handles the non-Hermitian form with comparable 
speed, at no loss  of accuracy in the eigenvalues and eigenvectors. The sum of the 
eigenvalues is 0.31E-14+12.i. 

These seven examples were  chosen to be representative of the application of 
ALLMAT. Some matrices (A1,A4,A5, and A7) pose no particular problems, while the 
remaining (A2,A3, and As) were  included to demonstrate one of more special charac- 
te r i s t ics  of the program. It is seen from the results given above that ALLMAT had no 
difficulty with any of these test matrices. The norm of the residual vectors is typically 
less than 1.E-15, and all computed eigenvalues that were  also known exactly were in 
agreement to at least 14 places. At no point did either the QR algorithm o r  the inverse 
iteration fail to give convergence within the allotted l imit  of 10 iterations. In fact, only 
once did the inverse iteration procedure require more than three iterations to satisfy 
the convergence criterion. 

A comparison of the results indicated in the preceding table with the results f o r  

CONCLUDING REMARKS 

This report  is intended to be a use r ' s  guide f o r  the prospective use r  of ALLMAT. 
The information presented here  about the construction of ALLMAT should be considered 
a minimum for  the use  of this matrix eigenvector program. No program of the com- 
plexity of ALLMAT should be used without some understanding of the basic algorithms 
involved. Certainly, though, most u s e r s  will apply ALLMAT without consideration of 
even the simplified discussion presented here. 
should be  required usage as an indicator when ALLMAT does fail on a matrix. 

eigenvector correct to sufficient accuracy. 
iterates until the norm of the iterated vector, (A - 
computing t ime is at a premium, this criterion can be easily changed to a test on the 
number of iterations. The current limitation on ALLMAT is to matrices of dimension 
no larger  than 50. This restriction may also be changed easily. 

subroutine. Almost any matrix, including the most general case of a complex, non- 
Hermitian matrix, is amenable to diagonalization by ALLMAT. 

F o r  these u s e r s  the entry point EVDATA 

Experience has shown that two inverse iterations are usually enough to give an 
The current version of ALLMAT, however, 

X,  is greater  than 1. E40. If 

ALLMAT w a s  designed to be a general purpose matrix eigenvalue and eigenvector 

Furthermore,  timing 
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test (ref. 5) indicate that the QR transform may be preferred to the Jacobi method for  
the eigenvalues of real and symmetric matrices. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, September 16, 1970, 
129-02. 
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APPENDIX - FORTRAN LISTING 

0 0 0 0 1 0 0  SUBROUTINE ALLMAT (4-A, LAMBDA,M,MM, EVECT, NCAL) 
0 0 0 0 2 0 0  - I M P L I C I T  REAL*8  (A-H,O-%) 
0 0 0 0 3 0 0  - COMPLEX*l f i  AA(MM,MM) 
0 0 0 0 4 0 0 C  G, 

o o o o f i o o c  DIMENSIONS I N  THE 2 L I N E S  FOLLOWING THIS COMMENT YUST 
0 0 0 0 7 0 0 C  BE CHANGED FROM 5 0  TO A S I Z E  TO S U I T  THE USER. 
0 0 0 0 8 0 I l C  
0 0  0 090 0 ' C O M P L E X * l f i  A(50,50,),H(50,50),HL(50,50), LAMB!7A(MM) 
0 0 0 1 0 0 0  ~ COMPLEX*lFi VECT( 5 0 )  ,MULT( 501, S H I  F T ( 3 )  ,TEMP, S I NT, COST,TEMPl,TEMPZ 
0 0 0 1 1 0 0  COMPLEX*16 E 1 C ,  CONJ 1 
0 0 0 1 2 0 0  LOG I CAL EVECT, 1 N T I i ( 5 0 )  
0 0 0 1 3 0 0  D l M E N S l  ON NCOUNT(50),MCOUNT(50) 
0 0 0 1 4 0 0  INTEGER JNT(SO),R,RPl,RPZ 
0 0 0 1 5 0 0  DO l n 0 O  J = l , M  

0 0 0 1 7 0 0  1 0 0 0  A ( I , J )  = A A ( I , J )  

0000500C I F  THE USER REQUiREs,,&+'MENsiON LARGER THAN 50, THE 

0 0 0 1 6 0 0  DO 1 0 0 0  I = ~ , M  

0 0 0 1 8 0 0  
0 0 0 1 9 0 0  
0 0 0 2 0 0 0  
0 0 0 2 1 0 0  

0 0 0 2 3 0 0 C  
0 0 0 2 4 0 0 C  
0 0 0 2 5 0 0 C  
0 0 0 2 6 0 0 C  
0 0 0 2 7 0 0  
0 0 0 2  8 O O C  
0 0 0 2 0 0 0 c  
0 0 0 3 0 0 0 C  
0 0 0 3 1 0 0 C  
0 0 0 3 2 0 0 C  
0 0 0 3 3 0 0 C  
0 0 0 3 4 0 0  
0 0 0 3 5 0 0  
0 0 0 3 6 0 0  

0 0 0 3 8 0 0  
0 0 0 3 9 0 0  
0 0 0 4 0 0 0  
0 0 0 4 1 0 0  
0 0 0 4 2 0 0  
0 0 0 4 3 0 0  

n o o 2 2 o o c  

n o 0 3 7 0 0  

CALL CPUTIFI(  I T I P I )  
ITSUM = 0 
KTSUFI = 0 
CONJI = (0 . , -1 . )  

THE CONSTANT EPS I L DETEEblI P!ES THE CONVEPGENCE OF THE 
QR ALGOR I TtiH, AND ALSO I S THE PERTURB4T I ON PARAMETER 
FOR THE I NVERSE I T E R A T I O N .  

E P S I L  = 1.OD-12 

THE CONSTANT EPSI4AX DETERMI FlES THE COb!VERGEb!CE OF THE 
INVERSE I T E R A T I O N .  T H I S  NUMBER I S  THE LOGARITHM OF 
NORM O F  THE ITERATED E l  GENVECTOR Tt iAT 1 S S U F F  1 C I ENT 
FOR CONVERGENCE. 

EPSMAX = 40.  
NSTOP = M 
N = NSTOP 
NSTART = 1 
MN1 = 1 
NCAL = 0 
I F  (N.NE.1) G O T O  1 
LAMBDA(1)  = A ( 1 , l )  
A ( 1 , l )  = 1 . 0  
GO TO 9 2  
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o n  0.4 4 0 0  
0 0 0 4 5 0 0  
0004f iOO 
0 0 0 4 7 0 0  

0 0 0 4 9 0 0  
0 0 0 5 0 0 0  
0 0 0 5 1 0 0  
0 0 0 5 2 0 0  
0 0 0 5 3 0 0  

0 0 0 5 5 0 0  
0 0 0 5 6 0 0  
0 0 0 5 7 0 0  
0 0 0 5 8 0 0  
0 0 0 5 9 0 0  
0 0 0 6 0 0 0  
0 0 0 6 1 0 0  
0 0 0 6 2 0 0  
0 0 0 6 3 0 0  
0 0  0 6 4 0  0 
0 0 0 6 5 0 0  
0 0 0 6 6 0 0  

0006F!OOC 
0 0 0 6 9 0 0 c  
0 0 0 7 0 0 0 C  
0 0 0 7 1 0 0  
0 0 0 7 2 0 0  
0 0 0 7 3 0 0  
9 9 0 7 4 0 0  
0 0 0 7 5 0 0  
0 0 0 7 6 0 0  
0 0 0 7 7 0 0  
0 0 0 7 8 0 0  

0 0 0 8 0 0 0  
0 0 0 8 1 n 0  
0 0 0 8 2 0 0  
0 0 0 8 3 0 0  
0 0 0 8 4 0 0  
0 0 0 8 5 0 0  
0 0 0 8 6 0 0  
0 0 0 8 7 0 0  
0 0 0 8 8 0 0  
0 0 0 8 P O O  

0 0 0 9 1 0 0  
0 0 0 9  2 00  
0 0 0 9 3 0 0  
OOi)P400 
0 0 0 q 5 0 0  
0 0 0 9 6 0 0  
OOOc1700 
QOO(380rJ 
0 0 0 ~ 9 0 0  

0 0 0 4 8 0 0  

n o 0 5 4 0 0  

o o n ~ i 7 0 0  

o o n 7 9 0 0  

o o n g o o o  

1 ICOUNT = 1 
S H I F T ( 1 )  = 0.  
I F  (N.NE.2)  GOTO 4 

TEI IP = (/\(FISTAPT, MSTART)+A(NSPl ,NSPl )+CDSQ!?T - 
1( (A(NsTART,NSTART)+A(NSPl,NSPl) ) * * 2 - 4 .  * (A !NSP l ,  -' 
1NSP1)  *A(NSTAF?T, NSTART ) - A (  NSP1, NSTART) *A(NSTART, - '  

1NSP1)  1 )  ) / 2 .  

2 N S P l  = NSTART + 1 

RELTECl = TEClP 
AMGTEP.1 = CONJ I *TEtnP 
I F (RELTEM. NE. 0.. OR. AKGTEM. NE. 0 . )  GOTO 3 
LAMBDA(NSTOP1 = S H l F T ( 1 )  

NCOUNT(NSTOP1 = I COUNT 
NCOUNT(MN1) = I CC)UF!T 
GO TO 3 7  

LAMBDA(MNl )= (A(NSTART,  NSTART) * A (  NSP1, N S P l )  - 

LAf4 B D A ( M N 1 ) = A ( N ST A RT , NS TART 1 + A ( bI S P 1, NS P 1 ) + S F I  1 F T  ( 1 

3 LAFIBDA(NSTOP1 = TEMP + S H I F T ( 1 )  
- '  

l A ( N S P 1 ,  NSTART)*A(NSTART,NSPl )  ) / (LAF lBDA(NSTOP)  -' 
2 - S H I F T ( l ) ) + S H l F T ( l )  

NCOUNT(NST0P) = I COUNT 
NCOUNT(MN1) = I COUNT 
ICOUNT = 1 
GO TO 3 7  

REDUCE MATRIX  A TO HESSEMBERG FORM. 

4 NM2 = N-2 

R P l  = R + 1  
RP2 = R+2 
A B I G  = 0. 

DO 5 I = R P l , N  
R E L A I R  = A ( I , R )  

A B S S Q  = R E L A I R * * 2  + AMGAIR**2 
I F  (ABSSO.LE.ABIC)  GOTO 5 
J N T ( R )  = 1 
ABlS = AGSSQ 

I NTEP. = Jr. IT(R) 
! F  ( A B I G . E Q . 0 . )  GOTO 1 5  
I F  ( INTER.EQ.RP1)  GnTO 8 
D O  6 I=R,N 
TEMP = A(RP1,  1 )  
A(RP1, I )  = A (  1 NTEP., I )  

6 A (  INTER, 1 ) = TE t lP  
DO 7 I = l , N  
TEMP = A ( I , R P l )  
A ( I , R P l )  = A ( I , I N T E R )  

7 A (  1, I N T E R )  = TEMP 
8 DO 9 I=RP2,N 

M U L T ( I )  = A ( I , R l / A ( R P l , R )  
9 A ( I , R )  = M U L T ( I )  

DO 11 I = l , R P 1  

DO 1 5  R=l,NP,l2 

J N T ( R )  = R F l  

AP.1GAIR = C O N J I * A ( I , R )  

5 CONTINUE 
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o n i o n o o  
o o i n i n o  

o n 1 0 3 0 0  

o n i n 5 0 0  

0 0 1 0 2 0 0  

0 0 1 0 4 0 0  

0 8 1 0 6 0 0  
0 8 1 0 7 0 0  
0 0 1 0 8 0 0  
0 0 1 0 9 0 0  
0 0 1 1 0 0 0  
0 0 1 1 1 0 0  

0 0 1 1 3 0 0 C  
0 0 1 1 2 n o  

o n i i 4 o o c  
n o i i 5 o o c  

n o i i 8 o n  

0 0 1 1 6 0 0  
0 0 1 1 7 0 0  

0 0 1 1 9 0 0  
0 0 1 2 0 0 0  
0 0 1 2 1 0 0  
0 0 1 2 2 0 0  

0 0 1 2 4 0 0  

0 0 1 2 6 0 0  
0 0 1 2 7 0 0  

n o 1 2 3 0 0  

n n i 2 5 0 0  

o o i 2 8 n o c  
n o i z q o o c  
0 0 1 3 0 0 0 C  
0 0 1 3 1 0 0  
0 0 1 3 2 0 0  
0 0 1 3 3 0 0  
0 0 1 3 4 0 0  
0 0 1 3 5 0 0  
0 0 1 3 6 0 0  
0 0 1 3 7 0 0 C  

0 0 1 3 9 0 0 C  
0 0 1 4 0 0 0 C  
0 0 1 4 1 0 0 C  
0 0 1 4 2 0 0  
0 0 1 4 3 0 0  
0 0 1 4 4 0 0  
0 0 1 4 5 0 0  
0 0 1 4 6 0 0  
0 0 1 4 7 0 0  
0 0 1 4 8 0 0  
0 0 1 4 9 0 0  
0 0 1 5 0 0 0  
0 0 1 5 1 0 0 C  

o o i 3 8 n n c  

n o i 5 2 o o c  
o n i 5 3 n o c  
o n i 5 4 o o c  
o n i 5 s o o  

TEMP = 0. 
DO 1 0  J=RP2,N 

1 0  TEMP = TEMP + A ( I , J ) * M U L T ( J )  
11 A ( I , R P l )  = A ( I , R P l )  + TEMP 

DO 1 3  I=RP2,N 
TEMP = 0. 
DO 1 2  J=RP2,N 

1 2  TEMP = TEMP + A (  I ,  J ) * M l . l L T ( J )  
1 3  A( I ,RP1)  = A (  I,RF'l)+TEMP-P*IUI-T( I ) * A ( R P l , R P l )  

DO 1 4  I=RP2,N 
DO 1 4  J=RP2,N 

1 4  A ( I , J )  = A ( I , J )  - M U L T ( l ) * A ( R P l , J )  
1 5  CONTINUE 

CALCULATE EPS I LON. 

EPS = 0. 
DO 1 6  I = l , N  

PO 1 8  I=2,N 
SUM = 0. 
I M 1  = I - 1 

DO 1 7  J = I M l , N  

1 6  EPS = EPS + C D A B S ( A ( l , I ) )  

1 7  SUM = SUM + C D A B S ( A ( I , J ) )  
1 8  IF(SUM.GT.EPS) EPS=SUf4 

EPS = b$QRTCl3,FLOAT(FJ) ) * E P S * l . D - 2 0  
I F  (EPS.  EQ. 0 . )  E P S = l . D - 2 0  
EPS I L = D F I A X l (  EPS, EPS I L )  

SAVE THE HESSENBERC, FORF.1 I'N THE ARRAY H. 
F.' 

2 0  DO 1 9  I = l , N  
DO 1 9  J = l , N  

19 f i ( l ,J) = A ( I , J )  
NSM1 = NSTOP - 1 
I F  (NSM1.NE.D) GOTO 1 0 0  
R = l  

START SCANNING FOR ZEROES I N  THE SUB-DIAGONAL. T H I S  
D E F I  NES THE SUB-BLOCKS OF THE DECOMPOSED HESSENBERG 
FORM. 

GO TO 1 0 2  

R = NSTOP - I + 1 
RELAP11 = A(  R, R - 1 )  
APlGAM1 = CONJ I *A(R, R - 1 )  
IF ( ( - , R A B S ( R E L A M l > + ~ A B S ( A ~ ~ ~ A ~ ~ l ) ) . L E . E P S I L )  GOTO 1 0 2  

1 0 0  DO 1 0 1  I = l , N S M l  

1 0 1  CONTINUE 
R = l  

1 0 2  NSTART = R 

NSTART AND NSTOP ARE THE I NDI CES OF THE BEG1 N N I  NG AND 
END OF A DECOMPOSED HESSENBERG BLOCK. 

NS = NSTOP - NSTART + 1 
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0 0 1 5 6 0 0  
0 0 1 5 7 0 0  
0 0 1 5 8 0 0  
0 0 1 5 9 0 0  
0 0 1 6 0 0 0  
0 0 1 6 1 0 0  
0 0 1 6 2 0 0  
0 0 1 6 3 0 0  
0 0 1 6 4 0 0  

0 0 1 6 6 0 0  
0 0  1 6  7 0 0  
0 0 1 6 8 0 0  
0 0 1 6 9 0 0  
0 0 1 7 0 0 0  
0 0 1 7 1 0 0  
0 0 1 7 2 0 0  
0 0 1 7 3 0 0  
0 0 1 7 4 0 0  
0 0 1 7 5 0 0  
0 0 1 7 6 0 0  
0 0 1 7 7 0 0  
0 0 1 7 8 0 0  
0 0 1 7 9 0 0 C  
0 0 1 8 0 0 0 c  
0 0 1 8 1 0 0 C  
0 0 1 8 2 0 0  
0 0 1 8 3 0 0  
0 0 1 8 4 0 0  
0 0 1 8 5 0 0  
0 0 1 8 6 0 0  
0 0 1 8 7 0 0  
0 0 1 8 8 0 0  
0 0 1 8 9 0 0  
0 0 1 9 0 0 0  
0 0 1 9 1 0 0  
0 0 1 9 2 0 0  
0 0 1 Q 3 0 0  
0 0 1 9 4 0 0  
0 0 1 9 5 0 0  
0 0 1 Q 6 0 0 
0 0 1 9 7 0 0  
0 0 1 9 8 0 0  
001c1900 
0 0 2 0 0 0 0  
0 0 2 0 1 0 0  
0 0 2 0 2 0 0  
0 0 2 0 3 0 0  
0 0 2 0 4 0 0  
0 0 2 0 5 0 0  
0 0 2 0 6 0 0  
0 0 2 0 7 0 0  
0 0 2 0 8 0 0  
0 0 2 0 9 0 0 c  
0 0 2 1 0 0 0 c  
0 0 2 1 1 0 0 c  

o n 1 6 5 0 0  

NC = NS 
M N 1  = NSTOP + NSTART - N 

1 0 3  I F  (NS.NE.1) GOTO 2 1  

NCOUNT(t lN1) = 1 COUNT 
GO TO 3 7  

LAMBDA(MN1) = A(NSTA’?T,NSTART) + S H I F T ( 1 )  

2 1  IF (NS.EQ.2 )  GOTO 2 
d 2 2  RELANN = A(N,N) 

AFIGANN = CONJI*A(h’ ,N) 
-RLNNMl = A ( N , N - l )  
-AMNNF,11 = COhlJ  l * A ( r J , N - l )  

R L N O N l  = A(PI,N-I.)/A(V,N) 
AMNDNl = C O N J I * ( A ( N , N - l ) / A ( N , N ) )  
I F  (RELANN.NE.0. .OR.  MGANN.NE.0.) - 

~ 1 I F  (, ABS(RLNDFI1) + D c B S ( A M N D N l ) - l . D - l t ? )  211,24,23 
2 5  IF (0 f B S ( R L N N f l l ) + Q A B S ( A P I V N M l )  .GE. EPS) GOTn 2 5  
24  LAFIBDA(blN1) = A(hI,N) + S H I F T ( 1 )  

NCOUNT(MN1) = 1 COUNT 
1COl.INT = 1 
N = N - 1  
NS = NS - 1, 
I4N1 = M N 1  + 1 
GO TO 2 1  

DETERM I NE SH I F T  

2 5  SHI FT(2)=(A(N-l,N-l>+A(N,N)+CDSQRT((A(\!-l, - 
l N - l ) + A (  N, N )  
2 * A ( N - l , N ) ) ) ) / 2 .  

* * ? - 4 .  * ( A  ( Y ,  N) *A (N-1, N - 1  ) - A (  N, N-1) - 
RELSHF = S H I F T ( 2 )  
AMGSHF = C O b ! J I * S H I F T ( 2 )  
I F (RELSHF. NE. 0.. OR. AFIGSHF. NE. 0 . )  GOTO 26  
S H I F T ( 3 )  = A ( N - l , N - l ) + A ( N , N )  
GO TO 2 7  

2 6 SH I FT  ( 3 ) = ( A  ( \ I ,  N ) * A  ( ?I-  1 N- 1 -A ( N, N- 1 ) * A  ( N- 1, N 1 1 / SH 1 F T  ( 2 1 
2 7 I F ( C h  A B S  ( S Y  1 F T  ( 2 ) -A ( V ,  N) 1 . LT.  ChARS (SH I FT  ( 3 ) 

INDEX = 3 
GO TO 2 9  

28  I N D E X  = 2 

- 
l - A ( N , N ) ) )  GO TO 2 8  

29  I F ( C ’ D A B S ( A ( N - l , N - 2 ) ) . G E . E P S )  GOT0 3 0  
LAPlBDA(t IN1) = S H I F T ( 2 )  + S H I F T ( 1 )  
L A M B D A ( f I N l + l )  = S H I F T ( 3 )  + S H I F T ( 1 )  
NC@UNT(MNl )  = ICOIJ?lT 
N C O U N T ( M N l + l )  = 0 
ICOUNT = 1 
N = N - 2  
NS = NS - 2 
MN1 = MN1 + 2 
GO TO 1 0 3  

DO 3 1  I=NSTART,N 
3 0  S H I F T ( 1 )  = S H I F T ( 1 )  + S H I F T ( I N O E X )  

3 1  A ( I , I )  = A ( I , I )  - S H I F T ( I N D E X )  

PERFOR/-I G I  VENS ROTAT I ONS, Q R  ITERATES. 
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0 0 2 1 2 0 0  
0 0 2 1 3 0 0  
0 0 2 1 4  0 0 
0 0 2 1 5 0 0  
0 0 2 1 6 0 0  
0 0 2 1 7 0 0  
0 0 2 1 8 0 0  
0 0 2 1 9 0 0  
0 0 2 2 0 0 0  
0 0 2 2 1 0 0  
0 0 2 2 2 0 0  
0 0 2 2 3 0 0  
0 0 2 2 4 0 0  
0 0 2 2 5 0 0  
0 0 2 2 6 0 0  
0 0 2 2 7 0 0  
0 0 2 2 8 0 0  
0 0 2 2 9 0 0  
0 0 2 3 0 0 0  
0 0 2 3 1 0 0  
0 0 2 3 2 0 0  
0 0 2 3 3 0 0  
0 0 2 3 4 0 0  
0 0 2 3 5 0 0  
0 0 2 3 6 0 0  
0 0 2 3 7 0 0  
0 0 2 3 8 0 0  
0 0 2 3 9 0 0  
0 0 2 4 0 0 0  
0 0 2 4 1 0 0  
0 0 2 4 2 0 0  
0 0 2 4 3 0 0 
0 0 2 4 4 0 0  
0 0 2 4 5 0 0  
0 0 2 4 6 0 0  
0 0 2 4 7 0 0  
0 0 2 4 8 0 0 C  
0 0 2  4 9  O O C  
0 0 2 5 0 0 0 C  
0 0 2 5 1 0 0  
0 0 2 5 2 0 0  
0 0 2 5 3 0 0  
0 0 2 5 4 0 0  
0 0 2 5 5 0 0  
0 0 2 5 6 0 0  
0 0 2 5 7 0 0  
0 0 2  5 8  00  
0 0 2 5 9 0 0  
0 0 2 6 0 0 0  
0 0 2 6 1 0 0  
0 0 2 6 2 0 0  
0 0 2 6 3 0 0  
0 0 2 6 4 0 0  
0 0 2 6 5 0 0  
0 0 2 6 6 0 0  

I F  ( ICOUNT.LE.10)  GOTO 3 2  
NCOUNT(MNP) = -1COUNT 
NC = NC - NS 
GO TO 3 7  

3 2  NM1 = N - 1 
T E M P l  = A(NSTART,NSTART) 
TEMP2 = A(NSTAPT+l ,NSTART) 
DO 3 6  R=NSTART,NMl 
NN = R 
R P 1  = R + 1 
R E L T M l  = T E M P l  
AMGTFll = CONJ I *TEMP1 

AMGTM2 = CONJ I *TEMP2 
RHO = *+DSQRT( RELTM1**2+AMGTM1**2+RELTM2**2+AMGTM2**2 1 

RELTM2 = TEMP2 

" IF (RHO.EQ.O.) GOTO 3 6  
COST = TEMPl/RHO, 
S l N T  = TEC1P2/RHO 
INDEX = MAXOCNN-1,NSTART) 
DO 3 3  I=INDEX,N 
TEMP = ~ C O N J G ( C O S T ) * A ( N N ,  I )+$CONJG(S I N T ) * A ( R P i ,  I 
A(RP1, I )  = -SINT*A(NI\ l ,  I )+COSV*A(RPl ,  I . )  

3 3  A(NN, I )  = TEMP 
T E M P l  = A(RP1,RP l )  
TEt.IP2 = A ( N N + 2 , R + l )  
DO 3 4  I=NSTART,R 
TEMP=COST*A(I,NN)+SINT*A(l,RPl) 
A( I ,  R P 1 ) = -0 CON J G ( S I NT ) * A  ( 1 , NN 1 +'D CON J I; ( COST * A  ( I , R P1)  

3 4 A ( I , N N )  = TEMP 
INDEX = MINO(NN+2,N) 
DO 3 5  I = R P l , I N D E X  
A ( I , N N )  = S I N T * A ( I , R P l )  

3 5  A (  I ,RP l )=DCONJG(COST)*A(  1 ,RP1) 
3 6  CONTINUE 

ICOUNT = ICOUHT + 1 
GO TO 2 2  

CALCULATE VECTORS. 

3 7  I F  (.NOT.EVECT) GOTO 6 4  
CALL CPUTIM ( J T  IM) 
LTSUM = ITSUFI + (JTIF4 - I T l I \ l )  
I F  (NC.EQ.0) GOTO 6 4  
NPNCAL = NSTART + NC - 1 
N = NSTOP 
NS = NSTOP - NSTART + 1 
NM1 = N - 1 
I F  ( N - N E . 2 )  GO TO 3 8  

I F (EPS. EQ. 0.1 EPS=EPS I L 
H ( 1 , l )  = A ( 1 , l ) .  
H ( 2 , l )  = A ( 2 , l )  
H (1 ,2 )  = A(1 ,2 )  
H ( 2 , 2 )  = A ( 2 , 2 )  

E.PS = QFl AX 1 ( CB.A BS ( LAPI BD A ( 1 ) , CD,A B S ( L Ab4 B D A'( 2 1 1 1 * 1. D- 1 6  

38 D O  6 3  L=NSTART,NPNCAL 
0 0 2 6 7 0 0  A B l G  = 0. 
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’ 002’6800 
0026900 
0027000 
0027100 
0027200 
0027300 
0027400 
0027500 
0027600 
0027700 
0027800 
0027900 
002 8000 
0028100 
0028200 
0028300 
0028400 
0028500 
0028600 
0028700 
00 2 88 00 
0028900 
0029000 
0029100 
0029200 
0029300 
0029400 
0029500 
0029600 
0029700 
0029800 
0029900 
0030000 
0030100 
0030200 
0030300 
0030400 
0030500 
0030600 
0030700 
0030800 
003 09 00 
0031000 
0031100 
0031200 
0031300 
0031400 
0031500 
0031600 
0031700 
0031800 
0031900 
0032000 
0032100 
0032200 
0032300 

EIG = LAMBDA(L1 
IF (L.EQ.NSTART) GOTO 4 0  
LM1 = L - 1 
RELEIG = EIG 
AMGE I G = CONJ 1 *E I G 
DO 39 I=NSTART,LMl 
RELAMI = LAMBDA( 1 )  
AMGAM I = CONJ 1 *LAMBDA( I 1 

IF (DABS(AMGEIG-AMGAMI).GT.EPSlL) GOTO 39 
EIG = EIG + CONJI*EPSIL 

IF (DABS(RELElG-RELAMI).GT.EPSlL) GOTO 39 

39 CONTINUE 
4 0  DO 42 I=l,N 

DO 41 J=l,N 
41 HL(J,I) = H(J,I) 
42 HL(I,I) = HL(I,I) - EIG 

DO 46 I=l,NMl 
MULT(I) = 0. 
INTH(I) = .FALSE. 
IP1 = I + 1 
IF (CDABS(HL(l+l,l)).LE.CDABS(HL(l,l))) GO TO 44 
INTH(I) = .TRUE. 
DO 43 J=I,N 
TEMP = HL(I+l,J) 
HL(I+l,J) = HL(I,J) 

43 H L ( I , J )  = TEMP 
44 RELH!! = HL(I,I) 

AMGHll = CONJI*HL(I,I) 
IF (RELHII.EQ.O..AND.AMGHII.EQ.O.) GOTO 46 
MULT(I) = -HL(l+l,l)/HL(l,l) 
DO 45 J=IPl,N 

45 HL(I+l,J)=HL(I+l,J) + MULT(I)*HL(I,J) 
46 CONTINUE 

48 VECT(I1 = 1. 
DO 48 I=l,N 

IF (NST0P.EQ.M) GOTO 110 
NSTPl = NSTOP + 1 
DO 47 I=NSTPl,M 

47 VECT(I) = 0. 

49 RELHNN = HL(N,N) 
110 ICOUNT = 1 

AMGHNN = CONJ I *HL(N, N) 

VECT(N) = VECT(N)/HL(N,N) 
DO 51 I=l,NMl 
K = N-l 
DO 50 J=K,NMl 

I F ( RE LH N N . EQ . 0 . . AND AF.1 G HN N . EQ . O w  HL(N,N)= PS 

50 VECT(K) = VECT(K) - HL(K,J+l)*VECT(J+l) 
RELHKK = HL(K,K) 
AMGHKK = CONJI*HL(K,K) 
IF (RELHKK.EQ.O..AND.AMGHKK.EQ.O.) HL(K,K)=EPS 

51 VECT(K) = VECT(K)/HL(K,K) 
BIG = 0. 
DO 52 I=l,N 
RELVEC = VECT(1) 
AMGVEC = CONJI*VECT(I) 
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0 0 3 2 4 0 0  
0 0 3 2 5 0 0  
0 0 3 2 6 0 0  
0 0 3 2 7 0 0  
0 0 3 2 8 0 0  
0 0 3 2 9 0 0  
0 0 3 3 0 0 0  
0 0 3  3 1 0 0  
0 0 3 3 2 0 0  
0 0 3 3 3 0 0  
0 0 3 3 4 0 0  
0 0 3 3 5 0 0  
0 0 3 3 6 0 0  
0 0 3 3 7 0 0  
0 0 3 3 8 0 0  
0 0 3 3 9 0 0  
0 0 3 4 0 0 0  
0 0 3 4 1 0 0  
0 0 3 4 2 0 0  
0 0 3 4 3 0 0  
0 0 3 4 4 0 0  
0 0 3 4 5 0 0  
0 0 3 4 6 0 0  
0 0 3 4 7 0 0  
0 0 3 4 8 0 0  
0 0 3 4 9 0 0  
0 0 3 5 0 0 0  
0 0 3 5 1 0 0  
0 0 3 5 2  00 
0 0 3 5 3 0 0  
0 0 3 5 4 0 0  
0 0 3 5 5 0 0  
0 0 3 5 6 0 0  
0 0 3 5 7 0 0  
0 0 3 5 8 0 0  
0 0 3 5 9 0 0  
0 0 3 6 0 0 0  
0 0 3 6 1 0 0  
0 0 3 6 2 0 0  
0 0 3 6 3 0 0  
0 0 3 6 4 0 0  
0 0 3 6 5 0 0  
0 0 3 6 6 0 0  
0 0 3  6 7 0 0  
0 0 3 6 8 0 0  
0 0 3 6 9 0 0  
0 0 3 7 0 0 0  
0 0 3 7 1 0 0  
0 0 3 7 2 0 0  
0 0 3  7 3  00 
0 0 3 7 4 0 0  
0 0 3 7 5 0 0  
0 0 3 7 6 0 0  
0 0 3 7 7 0 0  
0 0 3 7 8 0 0  
0 0 3 7 9 0 0  

SUM = DABS(RELVEC)+DABS(AMGVEC) 
I F  (SUM.LE.BIG) GOT0 5 2  
B I G  = SUE1 
I I  = I 
RELV = RELVEC 
Ar4GV = AMGVEC 

5 2  CONTINUE 
I F  (BIG.EQ.0.) GOTO 1 5 5  
I F  (AMGV.EQ.0.) GOTO 1 3 5  
I F  (DABS(AMGV).GT.DABS(RELV)) GOTO 1 2 5  
RAT = AMGV/RELV 
DEN = RELV + RAT*AMGV 
DO 1 2 0  I = l , N  
I F  ( I .EQ.11)  GOTO 1 2 0  
RELVEC = VECT( I )  

RELVC = (RELVEC + RAT*AtIGVEC)/DEN 
AMGVC = (AMGVEC - RAT*RELVEC)/DEN 
VECT ( 1 ) = DCtIPLX (RELVC, AMGVC) 

V E C T ( I I )  = 1. 
GO TO 1 5 0  

1 2 5  RAT = RELV/AMGV 
DEN = AMGV + RAT*RELV 
DO 1 3 0  I = l , N  

RELVEC = V E C T ( I )  
AMGVEC = CONJ I *VECT( I )  
RELVC = (AMGVEC + RAT*RELVEC)/DEN 
AMGVC = (RAT*AMGVEC - RELVEC)/DEN 

3 AMGVEC = C O N J I * V E C T ( I )  

1 2 0  CONTINUE 

IF ( 1 . ~ 4 . 1 1 )  GOTO 1313 

VECT( I )  = DCMPLX(RELVC,AMGVC) 
1 3 0  CONTINUE 

V E C T ( I I )  = 1. 
GO TO 1 5 0  

1 3 5  DO 5 3  I = l , N  

1 5 0  A B I G  = A B I G  + D L O G l O ( B I G )  

1 5 5  IF ( ICOUNT.GE.10 )  GOTO 55 

5 3  V E C T ( I )  = V E C T ( I ) / B I G  

I F  (ABIG.GT.EPSMAX1 GOTO 5 5  

DO 5 4  I = l , N F I l  
I F  ( . N O T . I N T H ( I ) )  GOTO 5 4  
TEMP = V E C T ( I )  
V E C T ( I )  = V E C T ( I + l )  
V E C T ( I + l )  = TEMP 

ICOUNT = ICOUNT + 1 
GO TO 4 9  

MCOUNT(L1 = ICOUh!T 
MP12 = M-2 
DO 5 7  I=1,MF42 
M11  = M-1-1 
M I 1  = M-1+1 
DO 5 6  J=FII l ,M 

INDEX = J N T ( M 1 1 )  

5 4  VECT( I +1) = VECT( I +l)+F!ULT( I ) *VECT(  I )  

5 5  I F  (M.LE.2) GOTO 6 9  

5 6  VECT(J)=H(J,Mll)*VECT(t41l+l)+VECT(J) 
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0 0 3 8 0 0 0  
0 0 3 8 1 0 0  
0 0 3  8 2 0 0  
0 0 3 8 3 0 0 C  
0 0 3 8 4 0 0 C  
0 0 3 8 5 0 0 C  
0 0 3  8 6  00 
0 0 3 8 7 0 0  
0 0 3 8 8 0 0  
0 0 3  8 9  0 0  
0 0 3 9 0 0 0  
0 0 3 9 1 0 0  
0 0 3 9 2 0 0  
0 0 3 9 3 0 0  
0 0 3 9 4 0 0  
0 0 3 9 5 0 0  
0 0 3 9 6 0 0  
0 0 3 9 7 0 0  
0 0 3 9 8 0 0  
0 0 3 9 9 0 0  
0 0 4 0 0 0 0  
0 0 4 0 1 0 0  
0 0 4 0 2 0 0  
0 0 4 0 3 0 0  
0 0 4 0 4 0 0  
0 0 4 0 5 0 0  
0 0 4 0 6  0 0  
0 0 4 0 7 0 0  
0 0 4 0 8 0 0  
0 0 4 0 9 0 0  
0 0 4 1 0 0 0  
0 0 4 1 1 0 0  
0 0 4 1 2 0 0  
0 0 4 1 3 0 0  
0 0 4 1 4 0 0  
0 0 4 1 5 0 0  
0 0 4 1 6 0 0  
0 0 4 1 7 0 0  
0 0 4 1 8 0 0  
0 0 4 1 9 0 0  
0 0 4 2 0 0 0  
0 0 4 2 1 0 0  
0 0 4 2 2 0 0  
0 0 4 2 3 0 0  
0 0 4 2 4 0 0  
0 0 4 2 5 0 0  
0 0 4 2 6 0 0  
0 0 4 2 7 0 0  
0 0 4 2 8 0 0  
0 0 4 2 9 0 0  
0 0 4 3 0 0 0  
0 0 4 3 1 0 0  
0 0 4 3 2 0 0  
0 0 4 3 3 0 0  
0 0 4 3 4 0 0  
0 0 4 3 5 0 0  

TEMP = VECT(M11+1)  
VECT(M11+1)  = VECT(1NDEX) 

5 7  V E C T ( I N D E X 1  = TEMP 

NORMAL I ZE E I GENVECTOR. 

6 9  SUM = 0. 
DO 5 8  I = l , M  
RELVEC = V E C T ( I )  
AMGVEC = C O N J I * V E C T ( I )  

SUM = DSQRT(SUM) 
IF (SUM.EQ.0.) GO TO 6 0  
DO 5 9  I = l , M  

5 8  SUM = SUM + RELVEC*RELVEC + AMGVEC*AMGVEC 

5 9  V E C T ( 1 )  = V E C T ( I ) / S U M  
6 0  CONTINUE 

6 1  A ( I , L )  = V E C T ( I )  
DO 6 1  I = l , M  

CALL C PUT I M ( KT I FI  1 
KTSUM = KTSUM + (KTIM - J T I M )  

6 3  CONTINUE 
NCAL = NCAL + NC 

6 4  I F(NSTART. EQ. 1) GOTO 7 0  
S H I F T ( 1 )  = 0. 
NSTOP = NSTART - 1 
N = NSTOP 
GO TO 2 0  

7 0  DO 8 0  L=2,M 
DO 7 9  I = l , M  

7 9  J N T ( I )  = 0 
RE LAM L = LAr4BDA ( L 1 
AMGAML = CONJ I *LAF.IBDA( L )  
L M 1  = L - 1 
R = O  
DO 7 1  I = l , L M l  
RELAMI = LAMBDA( 1 1 
AMGAPII = CONJ I*LA!!BDA( 1 1  
IF (DABS(RELAML-RELAMI).GT.EPS) GOTO 7 1  
I F (DABS (AMGAML-AIIGAM I 1. GT. EPS GOTO 7 1  
J N T ( 1 )  = L 
R = R + 1  

I F  (R.EQ.0) GOT0 8 0  
DO 7 2  I=l,M 

DO 7 5  l = l , L M l  
I F  ( J N T ( I 1 . N E . L )  GOTO 75 
TEMP = 0. 
DO 7 3  J = l , M  

DO 7 4  J = l , M  

I F  (R.EQ.1) GOTO 7 6  
R = R - 1  

7 1  CONTINUE 

72  V E C T ( 1 )  = 0. 

7 3  TEMP = TEMP + D C O N J G ( A ( J , L ) ) * A ( J , I )  

7 4  V E C T ( J 1  = V E C T ( J )  + TEMP*A(J , I )  

7 5  CONTINUE 
7 6  SUM = 0. 
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0 0 4 3 6 0 0  
0 0 4 3 7 0 0  
0 0 4 3 8 0 0  
0 0 4 3 9 0 0  
0 0 4 4 0 0 0  
0 0 4 4 1 0 0  
0 0 4 4 2 0 0  
0 0 4 4 3 0 0  
0 0 4 4 4 0 0  
0 0 4 4 5 0 0  
0 0 4 4 6 0 0  
0 0 4 4 7 0 0  
0 0 4 4 8 0 0  
0 0 4 4 9 0 0  
0 0 4 5 0 0 0  
0 0 4 5 1 0 0  
0 0 4 5 2 0 0  
0 0 4 5 3 0 0  
0 0 4 5 4 0 0  
0 0 4 5 5 0 0  
0 0 4 5 6 0 0  
0 0 4 5 7 0 0  
0 0 4 5 8 0 0  
0 0 4 5 9 0 0  
0 0 4 6 0 0 0  
0 0 4 6 1 0 0  
0 0 4 6 2 0 0  
0 0 4 6 3 0 0  
0 0 4 6 4 0 0  
0 0 4 6 5 0 0  
0 0 4 6 6 0 0  
0 0 4 6 7 0 0  
0 0 4 6 8 0 0  
0 0 4 6 9 0 0  
0 0 4  7 0 0  0 
0 0 4  7 1  0 0  
0 0 4 7 2 0 0  
0 0 4 7 3 0 0  
0 0 4 7 4 0 0  
0 0 4 7 5 0 0  

DO 7 7  I = l , M  
A ( I , L )  = A ( I , L )  - V E C T ( I 1  

I F  (SUM.EQ.0.) GOT0 8 0  
SUM = DSQRT(SUP1) 
DO 7 8  I = l , M  

7 8  A ( I , L )  = A( I ,L ) /SUM 
80  CONTINUE 
9 2  DO 9 5  J = l , M  

DO 9 5  I = l , M  
TEMP = A ( I , J )  
A ( I , J )  = A A ( I , J )  

RETURN 
ENTRY EVDATA (ITS,KTS,NCO,MCO,RNORM) 
D IMENSION M C O ( l ) ,  NCO( 11, RNORM (1) 
DO 8 3  I = l , M  

I T S  = ITSUM 
I F (.NOT. EVECT) RETURN 
DO 8 4  I = l , M  

ANORM = 0. 
D O  8 5  I = l , M  
DO 8 5  J= l ,M 

7 7  SUM = SUFI + A( I ,L)*DCONJG(A~I ,L) )  

9 5  A A ( I , J )  = TEMP 

8 3  NCO(1 1 = NCOIJNT(1 1 

8 4  M C O ( I )  = MCOUNT(1) 

8 5  ANORFI = ANORrI + A(J ,  I ) *DCONJG(A(J ,  1 ) )  
ANORM = DSQRT (ANORbZ) 
I F  (ANORM.EQ.0.) ANORbl=l.  
KTS = KTSUM 
DO 9 0  L= l ,M  
VNORM = 0. 
DO 8 9  I = l , M  
TEMP = 0. 
DO 8 2  J = l , M  

8 2  TEPIP = TEMP + A ( I , J ) * A A ( J , L )  
TEMP = TEMP - L A r l B D A ( L ) * A A ( I , L )  

8 9  VNORE.1 = VNORM + (CDABS(TEMP) ) * *2  
9 0 R NO RM ( L 1 = D S QRT ( V N 0 RF1) / A N 0  RF.1 

RETURN 
END 
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